
Fur the r ,  Eqs.  (29)-(31) give 

( tnl ) [P(~'6~"+'m' d2(%o--%)P~2%F~82=.ql+q2 

I 2mvkl 

v i 1,(2rn l + l  k; ] 82m~ =--,2~r 

(33) 

(34) 

f r o m  which 62(l) and a 2(/) a re  de termined.  

Note that  ff pure  liquid flows over  the ro to r  su r face ,  Eq. (32) becomes  the solution obtained in [4]. 

It is  a lso  poss ib le  to use  the Rakhmatul in  in te rpenet ra t ion  model ,  together  with exper imenta l  data, to 
ca lcula te  the flow of m a t e r i a l s  in o ther  m i x e r s ,  cent r i fuges ,  centr i fugal  d i f f u s e r - a t o m i z e r s ,  etc. 

NOTATION 

j, veloci ty,  mean  density,  and concentra t ion  (by volume) of the j - th  p h a s e ; / ~ ,  t rue  densi ty of the 
Vj, pj, ~ liquid s t r e s s  t ensor ;  Fj,  m a s s  fo rce  acting on the j - th  phase;  Tlki , and e ki, sJtress and s t r a in -  j - th  phase;  T, . 

r a t e  t en so r s ;  f12, phase - in t e rac t ion  force;  P, p r e s s u r e ;  R, radius  of conical  ro to r  channel; x 1, orthogonal 
coordina tes ;  p, V, densi ty and veloci ty  of mix ture ;  ~?, effect ive liquid viscosi ty ;  d, c h a r a c t e r i s t i c  dimension 
of solid pa r t i c l e s ;  w, angular  veloci ty  of ro tor ;  k, k*, n, m,  mi ,  k i ,  power - l aw  p a r a m e t e r s  for  liquid and 
mix tu re ;  ~, s e m i v e r t e x  angle of conical  channel; W, col lect ive  ra te  of  settling of solid pa r t i c l e s ;  ~s ,  f ac tor  
de te rmined  by the shape of the solid pa r t i c l e s ;  qj, m a s s  flow ra te  of j - th  phase;  r = R--5 c o s ~ ,  dis tance f rom 
axis  of ro to r  rotat ion to an a r b i t r a r y  point; p 20, bulk densi ty of solid phase.  
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CHARACTERISTICS OF FLOW BETWEEN A ROTATING 

AND A STATIC DISK IN THE PRESENCE OF 

RADIAL FLOW 

L. P. Safonov, V. M. Stepanov, 
and M. I. Drozdov 

UDC 532.526.75 

An improved  method is  p roposed  for  the calculat ion of the flow in the gap between a rotat ing and 
a stat ic  disk in the p r e s e n c e  of rad ia l  flow. The a lgor i thm of the solution is r ea l i zed  on a Na i r i -  
2 computer .  

To solve a number  of p rob l em s  assoc ia ted  with the hydraulic  c i rcula t ion  sect ion of a mul t i s tage  turbine 
with disk r o t o r s  and, in pa r t i cu la r ,  to calcula te  the axial  f o r ce s  and t e m p e r a t u r e  s tate  of the ro to r s  of a 
s t e a m  turbine,  it is  n e c e s s a r y  to know the rad ia l  dis t r ibut ion of the p r e s s u r e  of the medium in the gap between 
a rotat ing disk and the cor responding  stat ic e lement  (diaphragm, casing). An approx imate  solution of this  
p rob lem was obtained in [1] and subsequently ref ined in [2-4]. In [5], the re  was fu r the r  development  of the 
method of calculat ing the p r e s s u r e  dis t r ibut ion along the disk radius  in the p r e sence  of rad ia l  flow, but the 
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veloci ty  prof i le  used  for  the flow in the gap led, under ce r t a in  conditions, to the appearance  of negat ive values 
of the flow swir l ,  which is  inconsis tent  with the physica l  in te rpre ta t ion  of the problem.  Consequently,  the 
a g r e e m e n t  between the r e su l t s  obtained according to [5] and expe r imen ta l  data is  l imi ted [6]. 

In [6], on the bas i s  of a theore t i ca l  ana lys i s  and exper imen ta l  data, a calculat ion based on s imi l a r i ty  
theory  was proposed.  However ,  this  approach  r equ i r e s  the avai labi l i ty  of data obtained in model  exper iments .  

In a number  of works  - -  in pa r t i cu la r ,  [7] - -  it has  been shown by exper iment  and calculat ion that  in a 
broad range  of rad ia l  flow r a t e s  the prof i le  of the r ad ia l  component  of the flow veloci ty is  analogous to the 
veloci ty  prof i le  in a rad ia l  diffuser .  In the p r e s e n t  paper ,  this  analogy is  applied to the calculat ion of the 
rad ia l  p r e s s u r e  dis t r ibut ion in the gap between a rota t ing and a stat ic  disk. 

It is  a s sumed  that  the med ium in the gap between the disks is  i ncompres s ib l e  and that the flow is  ayAsym- 
met r i c .  In the ca se  when the gap between the disks is  na r row,  i . e . ,  the width s is  cons iderably  l ess  than the 
length r2-- r t ,  the t i m e - a v e r a g e d  turbulent  flow in the gap can be desc r ibed  by the equations 

o 

I S dp "r~r ~ 1 a rjc dz-- c dz= + - -  . (1) 
r dr r p dr p 

0 0 

$ 

1 d r, SCrC~dz= v~ I S 
r 2 dr --P- ~o ; (2) 

0 

$ 

2~r S c~z = q. (3) 
0 

Following [5], it is  a s s u m e d  that  if  the re la t ive  gap s = s / r  2 ---< 0.1, the flow between the disks is  viscous,  
i . e . ,  the re  is  no potent ia l  nucleus of the flow, and that  the boundary l aye r s  at the rotat ing and stat ic disks a re  
of th ickness  6 = 6' = s /2.  In accordance  with the r e su l t s  of [7], the p rof i l es  of the azimuthal  and radia l  veloci ty  
components  a re  wri t ten  in the following form:  c lose  to the rotat ing disk, 

%8/'( I 
and c lose  to the wall  (static disk), 

(4) 

'1 
, i" (5) 

The s t r e s s - t e n s o r  components  and the components  of the flow veloci ty  for  the tube a r e  re la ted  by a 

power  law with index 1/n [8]: 

c lose  to the disk, 
gJ , I --AI{C'$F~n, (4a) kv) 

and c lose  to the wall,  
1 

U'-~-~---2~2[ C*($--'~f) ] n ' - ~ ' C *  (5a) 

Let  a denote the ra t io  of the radia l  and azimuthal  components  of the  re la t ive  veloci ty  and the c o r r e s p o n d -  
ing s t r e s s - t e n s o r  components  in the boundary l aye r  c lose  to the disk: 

C $ r-- 2 "r 
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Fig. 1. Change in p r e s s u r e  in gap between rotating 
and stat ic disks for  flow f rom per iphery  to cen ter  
(Re u = 2- 106). The continuous curves  cor respond  
to calculation,  and the dashed curves ,  to exper iment  
[6]: a) w = 0.0114; b) 0.03; c) 0.06. 

Then 

= _ - _ _ _ _ % .  
%" V I - ~ - ~  %; ~'~ 1:1 + a'-' 

F o r  the chosen veloci ty prof i le  the re la t ive  velocity in the boundary layers  may be expressed  in t e r m s  of the 
flow veloci ty at the midpoint of the gap: c lose to the disk, 

' z )  :~ 
~=U T 

and c lose  to the wall, 
I 

~ , a ]  

Taking this into account, together  with the re la t ion 

I 
U = V c2 +((or--c  ~ )"- =~r(1  --V) (1 + ~)~,  

Eqs. (4a) and (5a) give the resu l t  

Hence for  the disk 

2nt 1 2 n t 
% = p A l  l+"' [tor (1- -  y)] l ~  ~-,  ( + 

2nl 2n~ n~--I 2 
Tzr'z=O ~---~DA 1 l '4-n~[o)g(l--y)]l-l- 'nt(l-~-O52)2(nt+l)(~)'l+n'-; 

2nt 2nz rtl--I 2 
Xz~;[z .o=--pA I l+'n' [ o ) r ( | - -  y)]l+n~ (1--}-tZ2)2(n~' l) ( ~ ) l ~ - n '  

Similar ly ,  for  the stat ic disk 

(6) 

(7) 

C S 

8 -  ; 
(ory 

2n~ 2nz " 2 nz--I 
"rzrlz=s ~pA2 I+.. [o)ry I ,+,,  i . . . .  (1 + - , 

-- 2n~ 211 z 0__~ tZ~--| 

(s) 

(9) 
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Fig. 2. Flow swir l  and p r e s s u r e  var ia t ion  between 
rotat ing and stat ic  disks for  flow f r o m  pe r iphe ry  to 
cen te r  (Re u = 2 .10s;  w = 0.0725). The continuous 
cu rves  co r r e spond  to calculat ion by the p roposed  
a lgor i thm and the dashed-dot  curves ,  to calculat ion 
according to [5]: a) flow swirl ;  b) p r e s s u r e  drop. 

Using a t he o rem  on the in tegra l  calculat ion of the means ,  the lef t -hand side of Eq. (2) is  t r ans fo rmed ,  
assuming  that  the m e a n - i n t e g r a l  value of the azimuthal  veloci ty  component  is  c lose  to i t s  value at the midpoint 
of the gap [3]: 

c,c~dz ~ .  c s crdz = (oy . (10) 
, r~2J 
D 0 

Thus Eq. (2) takes  the f o r m  

1 ls o)q 1 d ( r y y ) = _ z ~ ]  . (11) 
2n r 2 dr p o 

Then Eqs. (3) and (5) give 

In addition, 

c ~ = q (12) 
nl  , n2 ) - 

" ~ g r s  l + n x 1 - - n o .  

q 

/ ucor~'s (1 - -  y ) 1 + n x -~' 1 -3 n.z 

no)r:sy ( -  

Substituting Eqs. (4) and (5) into Eqs. (1) and(11), 
dim ens ionless  va r i ab l e s  g ives  

q i n 1 n 2 ) 

l ~ n 1 ~ 1 + n 2 . p 

(12a) 

taking into account Eqs. (12) and (12a), and pass ing to 

') 2n,  _ 2 2nl 

2 ' '+", C Re.) '+" '  ) ' + ~  ( 1 - - y ) J _  
dr sq 

nt--|  

1 + n I I + n 2 
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2 
2 l+n~ - -  ( s l~%) 

sq �84 

l-'bn2 2nt 2nt 

_ _ A  2 ~+", ) ' + . , y  y 2 § 

[ ( " d/~ = 2  n z 
d r  (2+nx)  1-~-n, 

.A_ n2 

111 @ 

1 + n ,  

n2 )-~ 
1 -+-n 2 

(2 ~- n2) na i' nl 
1 - - 'n  1 1 @ n  z 

(n 1 + 3) n 1 4-  2na 
+O.5r  1 - -  ( l + n , ) ( 2 + n 0  ( l + n l ) ( 2 + n , )  

3~-nt 2nt 
' ( t ~ l t l " 2 ) l ' l + n t A : t l + n t z  tt 2 2 

2 - - t q  2 '--. n.2 , _ =- 

2 
X (1 -+- 'h) (1 --n2) -- ,+n, -~ 

l ' n  ' ' n1( - -  l) -c- n2(l- n2) (srReu)  

n,--I 3-:-n., 2 n .  

• ( l - - y ) Z  - --r"- th n2 

1 -= t h 1 + n 2 

)2 ] _~ (:"~ll, 2y. 

n 2 ) r 

l+n.2 

(13) 

x (1 -+ nl)(1 + n2) (srR%) ,+n, 
nl (1 + n  0 + n~( l+  n2) 

/) �9 , 2 q  2 {nt+----~) X y2 ~ 
r~ n 1 ~ n~ 

l ~ n  1 l@nz  

(14) 

The constants  n 1 and A 1 desc r ibe  the veloci ty  prof i le  in the region adjacent  to the disk and the constants  
n 2 and A2, that  in the region adjacent  to the wall. 

The dependence of the constants  n and A on Re is  taken to be analogous to the cor responding  dependence 
for  a c i r c u l a r  tube. In the range  Re = 104-107, according to the data of [8], these  dependences may  be taken 
in the f o r m  

n = 2 1 g R e - - 3 ;  A =  1.81g Re - -  0.26. 

Fo r  the flow region adjacent  to the disk,  the Reynolds number  is 
1 

Res, d -  w2s =2R% (I--9)2 ~ _- = 
Y2n 

and for the flow region adjacent to the wall 
1 [ Resw U 2 s  = 2Reu y2 ~- _ _ - _ _  , ~r. 

~] r2n 

(15) 

(16) 

In the f i r s t  approximat ion,  the constant  n may  be taken equal  to 7. As shown by calculat ion,  this ap- 
p rox imat ion  is  adequate for  the requ i red  level  of accuracy.  As is  evident f rom Eqs. (15) and (16), Res  d and 

Resw depend on the flow swir l  and the rad ius ,  which compl ica tes  Eqs. (13) and (14). In o rde r  to invest igate  
the effect  of change in Re along the radius ,  ca lcula t ions  were  made  for  constant  Re (determined at r = 1, i . e . ,  
at the radius  at which the med ium is  supplied) and for  Re changing at each integrat ion step. These  calculat ions 
showed that  the e r r o r  in de termining the p r e s s u r e  drop over  the radius  when Re is  taken to be constant  over  the 
rad ius  amounted to ~ 10%. 

In the c a s e  where  the r e su l t s  of the calculat ion show that  Re p a s s e s  outside the range  10 4 -< Re --~ 10 7 for  
a cons iderab le  pa r t  of the channel,  the calculat ion mus t  be repea ted  with new values  of n and A, chosen in 
a c c o r d a n c e  with the flow conditions [8]. Calculat ions show that  in the ma jo r i t y  of c a se s  Re does not pass  

143 



outside the given range,  although this  i s  poss ib le  s o m e t i m e s ,  on compara t i ve ly  smal l  p a r t s  of the channel. * 
The range  of y for  which Re < 10 4 is  as follows: for  flow c lose  to the wall, 

for  flow c lose  to the disk, 

/ q ~ 2~rsn  ] . 
y2 < ((~r)~ , 

( '1 ~ ( y - -  I)"-< ~-s 10 q~- �9 2~rsn  
(o)r)'- 

A Nai r i -2  digital  compute r  was used  to in tegra te  Eqs.  (13) and (14). Calculat ions were  c a r r i e d  out for  
Init ial  flow swir l  0.57 and 0.60 and var ious  f low- ra te  coeff icients  ~ (in the range  0.08-0.007), cor responding 
to m e a s u r e m e n t s  made in an expe r imen ta l  invest igat ion [6] of the flow between a rotat ing and a stat ic  disk. 
The r e su l t s  of the calculat ion a re  shown in Fig. 1, together  with rad ia l  p r e s s u r e  dis t r ibut ions obtained, expe r i -  
mental ly .  

As is  evident f r o m  the above, for  va lues  of the f low- ra te  coefficient  q >- 0.02, the calcula ted and exper i -  
menta l  r e su l t s  a re  in s a t i s f ac to ry  agreement .  F o r  q < 0.02, the ca lcula ted  radia l  p r e s s u r e  drop is  l a r g e r  
than the expe r imen ta l  value. This  is  due to a lack of co r respondence  between the calculat ion scheme and the 
actual  flow pic ture .  At these  values  of ~, evidently,  a significant  role  begins to be played by c i rcula t ion of the 
med ium in the gap, which is  not taken into account  in the chosen veloci ty profile.  

In conclusion,  note that  the veloci ty  prof i le  of the flow used in [5] makes  allowance for  c i rcula t ion  of the 
med ium in the gap. However ,  the use  of this prof i le  leads to the appearance  in the calculat ion,  under  ce r ta in  
conditions,  of a negat ive  value of the flow swir l  at the gap midpoint,  which is inconsis tent  with the physica l  
p ic ture  of the problem.  F o r  compar i son ,  Fig. 2 shows r e su l t s  calcula ted by the method outlined above and by 
that  of [5] for  the flow c h a r a c t e r i s t i c s  with flow swir l  0.6, re la t ive  gap 0.0725, and f low- ra te  coefficient  q = 
0.01 and 0.04. F o r  ~ = 0.04 the r e s u l t s  coincide,  whe reas  for  ~ = 0.01 the flow swir l  and p r e s s u r e  drop given 
by [5] a r e  cons iderab ly  lower. 

The conclusions a re  as follows. 

1. A method has  been developed for  the calculat ion of the flow swir l  and radia l  p r e s s u r e  drop in the gap 
between a rotat ing and a s ta t ic  disk in the p r e s e n c e  of rad ia l  flow. The re  is good ag reemen t  of the ca lcula ted  
and expe r imen ta l  r e su l t s  for  ~ >- 0.02. 

2. F o r  q < 0.02, the d i sc repancy  between the exper imen ta l  and calcula ted  data I n c r e a s e s ,  evidently as 
a resu l t  of c i rcu la t ion  of the medium in the gap between the disks.  To solve the p rob lem in this range of flow 
ra te s ,  additional inves t igat ions  a re  required.  

N O T A T I O N  

r ,  ~, z, radial ,  azimuthal ,  and axial  coordina tes ;  s, gap width between d i sks ;  5, 5 ' ,  t h icknesses  of 
boundary l aye r s  at s ta t ic  and rotat ing disks;  ~, density;  p, p r e s s u r e ;  q, volume flow ra te  of medium in radia l  
direct ion;  v, k inemat ic  v i scos i ty ;  u, w, absolute and re la t ive  veloci t ies ;  Cr, c~, components  of absolute 
velocity;  w, angular  velocity;  U, flow veloci ty  at gap midpoint;  c* = ~-0-0~, dynamic flow velocity;  Tzr,  r z ~ ,  
s h e a r - s t r e s s  components ;  N = s / r2;  r e la t ive  gap width; r = r / r2 ,  r e la t ive  radius;  q = q / 2 ~  w s~, re la t ive  flow 
ra te ;  p = p/~cc2r~, re la t ive  p r e s s u r e ;  y = c~/ccr, flow swirl ;  Re u = xr2/p,  Reynolds number ;  A1, A 2, n 1, n 2, 
coefficients .  Indices:  d, disk; w, wall. 
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The shaking loose of a v iscoplas t ic  f i lm of l imit ing th ickness  f r o m  a plane sur face  is  cons idered  
for  the case  when the re  is effect ive slip at the wall. 

A f i lm of v i scoplas t ic  liquid is c h a r a c t e r i z e d  by a l imit ing value of the th ickness ,  at which no flow is 
obse rved  under  the action of gravi ty .  This  l imiting th ickness  is  found f r o m  the balance of f r ic t ional  and 
grav i ta t iona l  f o r ce s  

h --~o/pg, 

where  T O is  the y ie ld  point; p is  the density;  and g is  the acce le ra t ion  of gravi ty .  

In a n u m b e r  of technological  p r o c e s s e s ,  i t  i s  n e c e s s a r y  to p revent  the fo rmat ion  of a liquid f i lm at a 
wall. The p r e s e n t  pape r  cons ide r s  a dynamic approach  to th is  p rob lem,  by v ibra t ion  of the wall. 

Suppose that  the wall  and the adhering f i lm a re  moving uniformly downward with veloci ty  U and, at the 
ini t ial  momen t  t = 0, stop instantaneously.  Close  to the wall,  the s t r e s s  exceeds  the yie ld  point T0, which 
leads  to the fo rmat ion  of a region of v i scoplas t ic  flow. In the second region,  where  th6 s t r e s s  is  l e ss  than 
~'0, the liquid m o v e s  in a quas isol id  manner .  In the immed ia t e  vicini ty of the wall,  the moving d i spe r se  sys tem,  
or  po lymer  solution, m a y  be s epa ra t ed  into a thin l aye r  of solvent,  with r e spec t  to which all the remaining 
m a s s  s l ips ,  as in a lubricant.  It is  poss ib le  to neglect  the th ickness  of the region at the walt  in compar i son  
with the f i lm th ickness  and to a s s u m e  that at the su r face  of the plate  the adhesion hypothesis  does not hold, i . e . ,  
t he r e  is  effect ive sl ip at the wall,  u(0, t) ~ 0. (The case  u(0, t) = 0 was cons idered  in [1]. ) 

r - r  - ' - -  !' - -  . . . . . .  

: ' 2  r ' 

v,s 0: - -  - 

Fig. 1. Veloci ty  of quas isol id  co re  of f i lm flow (a) and boundary 
of quas isol id  region (b) for  S = 0.25: 1) P = 0; 2) 0.05; 3)0.1. 
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